In order to explain the suitability of formula (1) also for other processes taking place in a fluidized bed,
Fig.4 graphically shows the dependence of the degree of saturation of air by water vapor aZ on the height of
the fluidized bed H for different values of n and u. The curve constructed according to formula (1) is also
plotted on this graph.

It can be seen from Fig.4 that the curve plotted according to formula (1) is close to the curves construc-
ted for processes taking place in the wetted fluidized bed without heat evolution (u = 0) over the whole height
of the bed H. In the presence of significant heat evolution, a significant difference can be seen between the
path of the curves (in the direction of increase of aZ) for a given height H and the ciirve obtained by formula (1).
However, for values of aZ > 0.95, all the curves practically coincide. Thus, we may assume that formula (1)
can be used for estimating the height of the active zone hgz for a wide circle of heat- and mass-exchange pro-
cesses taking place in a wetted fluidized bed.

NOTATION

H, total height of fluidized bed, m; Z,, ®;, humidity and temperature of the air at the inlet to the appa-
ratus, kg/kg and°C; Zo, @, humidity and temperature of the air at the outlet from the fluidized bed of
infinite height; T, temperature of particles in the fluidized bed, °C; g, quantity of heat evolved per 1 kg of
assimilated moisture; g, mass flow rate of air, kg/m? h; F, surface area of particles in the flnidized bed,
1/m; «, B, coefficients of heat- and mass-exchange, respectively; Py, atmospheric pressure, atm; w, linear
velocity of air, m/sec; coefficients of Eq. (1): K; = 0.36-10%; K,, shape factor of particles, equal to 1/6 for the
case of spheres; K;, ratio of the gas constants of the vapor supplied to the fluidized bed of liquid and fluidizing
agent, equal to 0.622 in the case of water vapor and air; HB, dimensionless complex, where B = ﬁFPO/gc.
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FORCED-CONVECTION HEAT TRANSFER IN POROUS
MEDIUM WITH JOULE~THOMSON EFFECT

A. I. Filippov UDC 536.24.02

The heat-conduction effect on the thermal field of the throttle effect is investigated close
to the boundary of a porous medium at low pressure gradients.

A thermal field is considered in two semiinfinite media, one of which is impenetrable and the other of
which is a porous medium; in the latter a fluid motion takes place accompanied by the Joule—Thomson effect.
Such a problem arises when thermal fields are investigated in collector-carriers of oil and gas [1] or in
various installations for studying and utilizing the Joule—Thomson effect. A wide range of heat-exchange
problems on the boundary of two different throttle fluids can be reduced to the above problem.

It is known that the heat-conduction effect due to fluid motion is small [2]. A low pressure gradient
arises in the direction of convection so that the derivative of temperature due to throttling is small; the latter
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Fig.1. Relative temperature T/eP () versus Fo/% for y = 0 for linear pressure profile P(n) =

cH.
Fig. 2. Relative temperature T1,2/ eP(n) versus y for linear pressure profile.

enables one to neglect heat conduction due to throttling in an impenetrable medium. It is assumed that in-

stantaneous heat exchange takes place between the skeleton of porous medium and the throttling fluid [3].

The problem can therefore be formulated mathematically as

0T, oT, oP aT,
Loyl —rt e ="l .20, x>0, >0, 1
U o ”[ ax ax ] o <D= @
0%T, dT, ’
2 =—-*,2>0,{>0, x>0
e 02 ot = = @)
with the boundary conditions
: oT, . 0T, |
Tiomo = Tofeegy A= -t = 2 ¢ 3)

; 2
0z sy 0z -0

and the initial condition

Tl,g‘l:;[] = O- (31)
In the dimensionless form it becomes
o°T, T, _, 0P 0T1;y<0,.ﬂ>0, Fo=0: @
ay® % 0% dFo
07T, or :
2 = ———; y>0, Fo=>0; 5
3¢ 9Fo ¥ ©)
aT, ! oT,
Tyly= =Tr; ; 3 1 = e Pe H T 2!<°=0:0. 6
ne=e 2= Oy y—o 0y y=o a ®)
In the above one has
at xa z a, A
Fo——; %= D Ye=— a=—2 A= L, )
R TR VTR a A (7)
In the Laplace—Carson transform space,
Uy,0 = pg | dFo | exp(— pFo—ga) Ty, (y, %, Fo)dx, (8)
b b
the problem (4)-(6) is transformed into
) ,
S =GP eP o) (9)
Y
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The solution of the system (9)- (10) is given by the expressions
eqP (g) —
— LT g exp[— lyil; 1z)
pig el Vo+aqlyl
Uy = Cyexp [ 1/ - y] (13)
To find the coefficients c; and ¢, one obtains from the conditions (11)
1.,/ p I
_#F@ T]/ o Vet | y<0; (14)
p+q ’
|/ P ViTe
Vp+qexx>(——y /—p~)
0y — 2P @ Vel |, )

pe + ]/ZHGE

To obtain inverse transforms of the solutions (14)-(15) one can use the well-known operational relations
[4] by analogy with one of the problems in [5]:

% ———
2 OP (w—u' , F — ’
Ty=— V;—.J (i;x ")n(Fo—-u)jexp(——sz)erf(2{‘l’;lx_, s}»V“_] 0 u)dsdu; (16)
0
”OP( ,) Fo—x’ B i
€ H— A , xl y ,
= m—— —_—_— F —— . 7 f S A———— dd .
T T -s. O niFe %)jv l/ ai*t T4 * erc(2VFo—n’—1:)a) s an
0 0 a2

It can be shown that the expression thus obtained satisfies all the conditions of the problem (16)-(17). To
verify the correctness of the solution, two particular cases are considered:

a) if P(n) = 0 (constant pressure in porous medium), then (16)-(17) imply the trivial result of T; , = 0;

b) for u— = one obtains from (16) by substituting %' = x'a/uR?

T,=—s Y—a{)—(i"—xl—dx’= — &P (x). (18)
0x

L)

Substituting n' = Xa/uRz; T = 7'/u, one obtains from (17) for u —

T, = — &P (x)eric ( ) (19)

.y
2V aFo
The expression (19) is identical with the solution of the heat-propagation problem in the half-space where con-
stant temperature is maintained at the boundary. This is obvious, since with the rate of convective heat trans-
fer increasing one can neglect in a porous medium the effect of heat emission on temperature. Integrating (16)
or (17) in the case of y = 0 and for the linear pressure profile [P(®n) = cn], an expression is obtained which de-
scribes the temperature at the boundary of the porous medium:

——A'—K—a—_ —E(-)—' Fo<w;
1+AVa =
- €P7;%) = %(%){amtg(xl/al/g.——-l\}/(l:b) A'Vaﬂ[arctg —I:—g—l—-—}\]/-_ (20)
oo/ B 32
\ Fo>=«.
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In Fig.1 the results of the calculations are shown of the relative temperature at the boundary of the porous
medium in accordance with (20). To compute the temperature of the porous and impenetrable media a pro-
gram was prepared for the evaluation of the integrals (16)-(17) on the BESM-4M electronic computer. In
Fig.2 the results of these calculations are shown verified for the particular case (Fig.1).

It can be seen from the graphs that the time of reaching steady temperature at the boundary of the porous
medium depends strongly on the relation between the thermophysical properties of the porous (with a filler)
medium and the impenetrable medium. The highest possible value of Ava should be chosen to reduce the time.

NOTATION

t, time; x,z, coordinates; Ty, T,, a4, a5, Ay, Ay, temperatures, thermal diffusivities, and thermal con-

ductivities in penetrable and impenetrable half-spaces; u, rate of convective heat transfer by fluid; e, Joule—
{ 1, x>0;

Thomson coefficient; P(%), pressure distribution in porous medium; R, characteristic length; n{x) = 10, x <o0.
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LOCAL REBINDER CRITERION (NUMBER) OF
MOIST DISPERSED SOLIDS

P. P. Lutsik and V. M. Kazanskii UDC 66.047.35

The results of an analytical and experimental determination of the local Rebinder number
of moist dispersed solids are presented. The manner in which the number varies with the
properties of the dispersed solids to which it applies is established.

Many experimental and analytical investigations have been applied to the determination of the Rebinder
number, a quantity which is employed in calculating rates of drying by the Lykov equation [1] and is defined
by the expression

¢y du

Rb =2 e @)
[1-5]. In all the investigations of which we are aware, however, the Rb number which has been studied has
been that characterizing the behavior of the dispersed solid as a whole (the so-called integrated Rb
number). In a number of problems relating to the theory of drying it is nevertheless important to know the
"local" Rebinder number Rb* relating to an elementary volume of the drying material. A knowledge of the
local Rb number is required in the drying of multilayered porous materials and also when calculating heat and
mass flows inside the material, which determine the quality of drying (in respect of cracking, shrinkage, local
overheating, etc.).

This paper will be devoted to certain properties of the local Rb* number and its relationship to the in-
tegrated Rb number,
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